核黄素激酶

但是,在古菌核黄素激酶EC 2.7.1.161)中,常使用CTP而非ATP作为反应底物,催化如下反应:

CTP + 核黄素 CDP + FMN [2]
riboflavin kinase
核黄素激酶
Thermoplasma acidophilum中的核黄素激酶晶体结构[1]
识别码
EC编号 2.7.1.26
CAS号 9032-82-0
数据库
IntEnz IntEnz浏览
BRENDA BRENDA入口
ExPASy NiceZyme浏览
KEGG KEGG入口
MetaCyc 代谢路径
PRIAM 概述
PDB RCSB PDB PDBj PDBe PDBsum
基因本体 AmiGO / EGO
Riboflavin kinase
核黄素激酶
crystal structure of flavin binding to fad synthetase from thermotoga maritina
鑑定
標誌Flavokinase
PfamPF01687
InterProIPR015865
 SCOP1mrz / SUPFAM
Riboflavin kinase
核黄素激酶
鑑定
標誌Riboflavin_kinase
PfamPF01687
InterProIPR015865

核黄素激酶英語:EC 2.7.1.26)是一个催化以下化学反应

ATP + 核黄素 ADP + FMN

催化的反应的底物ATP核黄素产物ADP黄素单核苷酸(FMN)。

核黄素激酶也在许多细菌中发现,具有类似的功能,但存在若干数量的氨基酸不同。

反应

+ XTP → + XDP

Riboflavin is converted into catalytically active cofactors (FAD and FMN) by the actions of riboflavin kinase (EC 2.7.1.26), which converts it into FMN, and FAD synthetase (EC 2.7.7.2), which adenylates FMN to FAD. Eukaryotes usually have two separate enzymes, while most prokaryotes have a single bifunctional protein that can carry out both catalyses, although exceptions occur in both cases. While eukaryotic monofunctional riboflavin kinase is orthologous to the bifunctional prokaryotic enzyme,[3] the monofunctional FAD synthetase differs from its prokaryotic counterpart, and is instead related to the PAPS-reductase family.[4] The bacterial FAD synthetase that is part of the bifunctional enzyme has remote similarity to nucleotidyl transferases and, hence, it may be involved in the adenylylation reaction of FAD synthetases.[5]

This enzyme belongs to the family of transferases, to be specific, those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:riboflavin 5'-phosphotransferase. This enzyme is also called flavokinase. This enzyme participates in riboflavin metabolism.

结构

截止2007年底,这类酶中已有14个三级结构被解决,在PDB的登陆代码为1N051N061N071N081NB01NB91P4M1Q9S2P3M2VBS2VBT3CTA2VBU2VBV

参考文献

  1. PDB 3CTA; Bonanno, J.B., Rutter, M., Bain, K.T., Mendoza, M., Romero, R., Smith, D., Wasserman, S., Sauder, J.M., Burley, S.K., Almo, S.C. . 2008.
  2. Ammelburg M, Hartmann MD, Djuranovic S, Alva V, Koretke KK, Martin J, Sauer G, Truffault V, Zeth K, Lupas AN, Coles M. . Structure. 2007, 12 (12): 1577–90. PMID 18073108. doi:10.1016/j.str.2007.09.027.
  3. Osterman AL, Zhang H, Zhou Q, Karthikeyan S. . Biochemistry. 2003, 42 (43): 12532–8. PMID 14580199. doi:10.1021/bi035450t.
  4. Galluccio M, Brizio C, Torchetti EM, Ferranti P, Gianazza E, Indiveri C, Barile M. . Protein Expr. Purif. 2007, 52 (1): 175–81. PMID 17049878. doi:10.1016/j.pep.2006.09.002.
  5. Srinivasan N, Krupa A, Sandhya K, Jonnalagadda S. . Trends Biochem. Sci. 2003, 28 (1): 9–12. PMID 12517446. doi:10.1016/S0968-0004(02)00009-9.

延伸阅读

此条目包含有源于Pfam以及InterPro的属于公有领域的文本 IPR015865

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.