星形二十面體列表
下表列出了一些可以用二十面體星狀圖表示的星形二十面體,其中有58種收錄於哈羅德·斯科特·麥克唐納·考克斯特的《五十九種二十面體》[1]、21種星形二十面體收錄於《多面體模型》。構成這些星形二十面體的星形胞有12個,分別為a, b , c, d, e1, e2, f1, f1,f2, g1, g2和h。《五十九種二十面體》收錄的多面體中有27種都出現歪斜的外觀。它也包含特殊形狀如大二十面體、複合的多面體、扭曲的形狀,皆只收錄一種。

一種星形二十面體,其杜瓦記號計為De1。
第二種星形二十面體
在幾何學中,第二星狀二十面體是一種非凸多面體,屬於星形多面體,是哈羅德·斯科特·麥克唐納·考克斯特的《五十九種二十面體》中收錄的第二種第二種星形多面體。它可被視為11個多面體的複合體,包括了十個四面體和中間一個大菱形三十面體。它可以被視為多面體的星狀複合物,因此有時稱做複合星狀多面體。該多面體有被溫尼爾的《多面體模型》收錄,其索引為W27。
表格
複合多面體
星形多面體有些可以拆成多個子多面體,換句話說,有些星形多面體是由數個其他多面體組合而成的,較容易理解的類比比如六角星、大衛之星,是由兩個三角形嵌合在一起構成的。下表列出一些由若干多面體嵌合在一起構成的星形二十面體。
名稱 | 圖像 | 來源多面體 | 複合數量 | 編號 | 核心是 正二十面體 |
星狀圖 |
---|---|---|---|---|---|---|
五複合正四面體 | ![]() |
正四面體 | 5 | 47 (59) | 是 | ![]() |
十複合正四面體 | ![]() |
正四面體 | 10 | 22 (59) W25 |
是 | ![]() |
五複合正八面體 小星形十二面體 |
![]() |
正八面體 | 5 | W51 | 否 截半二十面體 |
![]() |
小星形十二面體 | 1 | |||||
六複合五方偏方面體 | ![]() |
五方偏方面體 | 6 | 4 (59) | 是 | ![]() |
五複合正八面體 | ![]() |
正八面體 | 5 | 是 | ![]() |
星形二十面體
下列表格以杜瓦記號開頭字母分類。
- A
杜瓦記號 | 圖像 | 編號 | 名稱 | 說明 | 星狀圖 |
---|---|---|---|---|---|
A | ![]() |
1 (59) W4 |
正二十面體本身 | ![]() | |
Af2 | |||||
Af2g1 | |||||
Af2g2 | |||||
acdf2g1 | ![]() |
- B
杜瓦記號 | 圖像 | 編號 | 名稱 | 說明 | 星狀圖 |
---|---|---|---|---|---|
B | ![]() |
2 (59) W26 |
![]() | ||
Be1 | |||||
be2 |
- C
杜瓦記號 | 圖像 | 編號 | 名稱 | 說明 | 星狀圖 |
---|---|---|---|---|---|
C | ![]() |
3 (59) W23 |
五複合正八面體 | ![]() | |
Ce2 | |||||
Cf2g1 | ![]() |
- D
杜瓦記號 | 圖像 | 編號 | 名稱 | 說明 | 星狀圖 |
---|---|---|---|---|---|
D | ![]() |
4 (59) | 六複合五方偏方面體 | 6個五方偏方面體的複合體(頂角藏在裡面) | ![]() |
De1 | ![]() |
21 (59) W32 |
![]() | ||
De1f1 | ![]() |
24 (59) | |||
De1f1d | ![]() |
35 (59) | |||
De1f1g1 | ![]() |
25 (59) | |||
De1f1df2 | |||||
De1f1df2g1 | |||||
De1f1df2g2 | ![]() |
44 (59) | |||
De1f1dg1 | ![]() |
38 (59) | |||
De1f1dg2 | ![]() |
41 (59) | |||
De1g1 | |||||
De2 | ![]() |
27 (59) | |||
De2f1d | ![]() |
46 (59) | |||
De2f1df2g1 | ![]() |
55 (59) | |||
De2f1df2g2 | ![]() |
58 (59) | |||
De2f1dg1 | ![]() |
49 (59) | |||
De2f1f2 | ![]() |
52 (59) | |||
De2f2 | ![]() |
30 (59) W34 |
大三角六邊形二十面體 | ![]() | |
De2f2_ | ![]() |
內側三角六邊形二十面體 | ![]() | ||
De2f2g2 | ![]() |
31 (59) | |||
Df1 | |||||
Df2 |
- E
杜瓦記號 | 圖像 | 編號 | 名稱 | 說明 | 星狀圖 |
---|---|---|---|---|---|
E | ![]() |
5 (59) | |||
Ef1 | ![]() |
22 (59) W25 |
十複合正四面體 | ![]() | |
Ef1d | ![]() |
47 (59) W24 |
五複合正四面體 | ![]() | |
Ef1df2 | ![]() |
53 (59) | |||
Ef1df2g1 | ![]() |
56 (59) | |||
Ef1df2g2 | ![]() |
59 (59) | |||
Ef1dg1 | ![]() |
50 (59) | |||
Ef1g1 | ![]() |
26 (59) W28 |
凹五角錐十二面體 | 看起來像凹十二面體 | ![]() |
Ef1g1_ | 實心凹五角錐十二面體 | 外觀同於凹五角錐十二面體,但中心不是空的 | ![]() | ||
Ef2 | ![]() |
28 (59) | ![]() | ||
Ef2g2 | ![]() |
32 (59) | |||
e1 | ![]() |
9 (59) W37 |
![]() | ||
e1f1 | ![]() |
12 (59) | |||
e1f1d | ![]() |
34 (59) W36 |
![]() | ||
e1f1df2g2 | ![]() |
43 (59) | |||
e1f1dg1 | ![]() |
37 (59) W39 |
![]() | ||
e1f1dg2 | ![]() |
40 (59) | |||
e1f1g1 | ![]() |
13 (59) | |||
e1g1 | ![]() | ||||
e2 | ![]() |
15 (59) | |||
e2f1 | ![]() |
45 (59) W40 |
![]() | ||
e2f1df2 | ![]() |
51 (59) W38 |
![]() | ||
e2f1df2g1 | ![]() |
54 (59) | |||
e2f1df2g2 | ![]() |
57 (59) | |||
e2f1dg1 | ![]() |
48 (59) | |||
e2f2 | ![]() |
18 (59) | |||
e2f2g2 | ![]() |
19 (59) |
- F
杜瓦記號 | 圖像 | 編號 | 名稱 | 說明 | 星狀圖 |
---|---|---|---|---|---|
F | ![]() |
6 (59) W27 |
Ef1與De2f2的複合體 | ![]() | |
Fg1 | ![]() |
23 (59) W31 |
內側三角六邊形二十面體(De2f2)與凹五角錐十二面體(Ef1g1)的複合多面體 | ![]() | |
Fg2 | ![]() |
29 (59) W33 |
![]() | ||
f1 | ![]() |
10 (59) | |||
f1d | ![]() |
33 (59) W35 |
![]() | ||
f1df2g2 | ![]() |
42 (59) | |||
f1dg1 | ![]() |
36 (59) | |||
f1dg2 | ![]() |
39 (59) | |||
f1g1 | ![]() |
14 (59) | |||
f2 | ![]() |
16 (59) | |||
f2g2 | ![]() |
20 (59) W30 |
![]() |
- G
杜瓦記號 | 圖像 | 編號 | 名稱 | 說明 | 星狀圖 |
---|---|---|---|---|---|
G | ![]() |
7 (59) W41 |
大二十面體 | ![]() | |
g1 | ![]() |
11 (59) W29 |
![]() | ||
g2 | ![]() |
17 (59) |
- H
杜瓦記號 | 圖像 | 編號 | 名稱 | 說明 | 星狀圖 |
---|---|---|---|---|---|
H | ![]() |
8 (59) W42 |
完全星形二十面體 | ![]() | |
Hj2 | 五複合立方半無窮 星形菱形十二面體 |
其對偶多面體為 五複合立方半菱形十二面體 或稱五複合刻面半立方體 (compounds of five hemi facetted cube) |
![]() |
參見
參考文獻
- H·S·M·考克斯特. . H. T. Flather, J. F. Petrie. Springer Science & Business Media. 2012. ISBN 9781461382164.
- . Virtual Polyhedra, George W. Hart. 1996.
- Roman E. Maeder. . mathconsult.ch. 1998.
- Guy's polyhedra pages. . steelpillow. 2006年7月11日 [2016年3月18日]. (原始内容存档于2016年3月13日).
外部連結
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.